Stabilizing High Energy Piezoelectric Polymorphs

Lauren M. Garten^{1*}, Riley Whitehead¹, John Magnum², Shyam Dwaraknath³, Laura Schelhas⁴, Michael F. Toney⁴, Julian Walker⁵, Brian Gorman², Paul Ndione¹, Susan Trolier-McKinstry⁵, Kristin Persson³, and David Ginley¹ ¹Material Science Center, National Renewable Energy Laboratory 15013 Denver West Parkway, Golden, CO, 80401 ²Metallurgical & Materials Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 ³Materials Science and Engineering, University of California-Berkeley, Hearst Mining Building, Berkeley, CA 94704 ⁴SSRL Materials Science Division, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 ⁵Materials Science and Engineering, The Pennsylvania State University, Pollock Rd, State College, PA, 16802 *Lauren M. Garten: Lauren.garten@nrel.gov

Many technologically relevant materials are not at in a true thermodynamic minimum, but can still be stabilized under the right conditions. Recent work within the Materials Project has made over 1,000 first principle piezoelectric tensor calculations publicly accessible, many of which are for metastable materials. (1) From this list, two metastable materials, SrHfO₃ and BaNiO₃, present suitable candidates for lead-free piezoelectric alternatives. In both of these materials the challenge is in synthesizing the desired polymorph from a set of structures close in energy. This talk focuses on impact of stabilization techniques, such as epitaxial strain, heterostructural alloying, and kinetic trapping, on phase formation.

For the thin films of SrHfO₃ were deposited by pulsed laser deposition from an SrHfO₃ target onto single crystal Perovskite substrates. Deposition temperatures from 250-900 °C and partial pressure of oxygen from 10^{-1} - 10^{-7} Torr were investigated. Deposition rate, and energy were also varied. Transmission electron microscopy in combination with selected area diffraction, synchrotron X-ray diffraction, and XRD pole figures suggest the formation of a P4mm piezoelectric structure that has not previously been reported.

Reference:

1. M. de Jong, W. Chen, H. Geerlings, M. Asta, K. A. Persson, A database to enable discovery and design of piezoelectric materials. *Scientific Data* **2**, 150053 (2015).