Bi(Mg_{2/3}Nb_{1/3})O₃-BaTiO₃-BiFeO₃ PbO-free Piezoelectric Ceramics

Shunsuke Murakami¹, Dawei Wang¹, Amir Khesro¹, Antonio Feteira², Derek C. Sinclair¹,

and Ian M Reaney^{1, *}

¹Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK ²Materials Engineering and Research Institute, Sheffield Hallam University, Sheffield S1 1WB, UK *Prof. Ian M. Reaney: i.m.reaney@sheffield.ac.uk

Pb(Zr,Ti)O₃ (PZT) has been widely applied in piezoelectric devices over the past few decades. However, concerns about environmental and health problems are growing because lead has significant toxicity [1]. BaTiO₃-BiFeO₃ (BT-BF) based materials are promising candidates for lead free piezoelectric materials. Lee reported that BT-BF based ceramics have high piezoelectric coefficient, $d_{33} = 402 \text{ pC/N}$ coupled with a high $T_{\rm C} = 454^{\circ}$ C after quenching [2]. However, there are challenges in applying quenched BT-BF ceramics for industrial applications such as poor mechanical reliability. Moreover, BT-BF ceramics lack the high temperature reliability needed for high strain/field piezoelectric applications such as fuel injectors for automotive engines. It has been suggested that the high leakage current results from either loss of Bi or formation of Fe²⁺ as opposed to Fe³⁺ during sintering and many researchers reported that some dopants alleviate these problems. However, the detailed mechanism of the dopant effects in BT-BF ceramics is still unclear because both acceptor and donor dopants have been reported to improve the resistivity of BT-BF ceramics [4, 5]. The aim of our work is to investigate the role of dopants and thus improve the piezoelectric properties in BT-BF based ceramics. To this end, we have studied ($Mg_{2/3}Nb_{1/3}$) as a self-compensated dopant in BT-BF ceramics within the solid solution (1-x-y)Bi(Mg_{2/3}Nb_{1/3})O₃-(x)BaTiO₃-(y)BiFeO₃. (Mg_{2/3}Nb_{1/3}) successfully unlocks the potential of BT-BF ceramics and (1-x-y)Bi(Mg_{2/3}Nb_{1/3})O₃-(x)BaTiO₃-(y)BiFeO₃ exhibits high strain and low temperature dependence of strain.

References

- [1] J. Rödel, K G. Webber, R. Dittmer, W. Jo, M. Kimura, and D. Damjanovic, *J Eur Ceram Soc*, 2015, 35, 1659-1681.
- [2] Myang Hwan Lee, Da Jeong Kim, Jin Su Park, Sang Wook Kim, Tae Kwon Song, Myong-Ho Kim, Won-Jeong Kim, Dalhyun Do, and Il-Kyoung Jeong, *Adv. Mater.*, 2015, 27, 6976-6982.
- [3] M. M. Kumar, A. Srinivas, and S. V. Suryanayana, J. Appl. Phys., 2000, 87, 856-862.
- [4] Tong Wang, Li Jin, Ye Tian, Longlong Shu, Qingyuan Hu, Xiaoyong Wei, Materals Lett., 2014, 137, 79-81.
- [5] Changrong Zhou, Antonio Feteira, Xu Shan, Huabin Yang, Qin Zhou, Jun Cheng, Weizhou Li, and Hua Wang, Appl. Phys. Lett., 2012, 101, 032901.