Complex Impedance Spectra of Amorphous and Glass-Ceramic Li₂O-7GeO₂ Compounds

O.O. Nesterov*, M.P. Trubitsyn, S.N. Plyaka, M.D. Volnyanskii Department of the solid state physics and optoelectronics, Oles' Honchar Dnipropetrovsk National University, Gagarin av. 72, Dnipropetrovsk, Ukraine, 49010 *Oleksii Nesterov: nesterov.alexsey@gmail.com

Ionic conductance in glass and glass-ceramics oxide-based materials depends on various factors, such as structure, relative volume of grains and interfacial regions, mean size of ordered nuclei, type of the phases spatial distribution [1]. Among dielectrics with high ionic conductivity, the crystalline and glass-ceramic compounds of lithium germanate family Li₂O-*x*GeO₂ are actively investigated. Quenching Li₂O-*x*GeO₂ glasses and their stage-by-stage crystallization on heating were published earlier in [2]. In [3] the glass samples with x=7, 11.5 were heat treated into the intermediate state with increased electric conductivity σ . In this abstract we studied complex impedance spectra for the phase states, obtained during crystallization of Li₂O-7GeO₂ glass.

The mechanism of charge transfer in amorphous, glass-ceramics and polycrystalline phases of $Li_2O-7GeO_2$ compound were studied by measuring the spectra of the complex impedance $\rho^*(\omega)$. The experimental spectra $\rho^*(\omega)$ were presented in $(\rho'-\rho'')$ complex plane and analyzed by using equivalent circuit approach. The obtained diagrams $(\rho'-\rho'')$ were typical for hopping conduction. Impedance relaxation rate τ^{-1} and activation energy E_a , determined for glass, intermediate nanocrystalline and polycrystalline states are in agreement with the results of independent AC conductivity measurements. Assuming that the rate τ^{-1} characterizes hopping of charge carriers, it is shown, that increased conductivity σ of the intermediate nanocrystalline state reflects higher mobility of Li ions as compared with glass and polycrystalline phase.

[1]. Maier, J. Nanoionic: ion transport and electrochemical storage in confined systems / J. Maier // Nature materials – 2005. – Vol. 4. – P. 805 – 815.

[2]. Volnianskii, M. D. Devitrification of the Li₂O-x(GeO₂) glass / M.D. Volnyanskii, O.O. Nesterov, M.P. Trubitsyn // Ferroelectrics. – 2014. – Vol. 466, No. 1. – P. 126 – 130.

[3]. Nesterov, O. O. Metastable state of the $Li_2O-11.5GeO_2$ glass-ceramics with a high electrical conductivity / O.O. Nesterov, M.P. Trubitsyn, D.M. Volnyanskii // Physics of the Solid State. – 2015. – Vol. 57, No. 4. – P. 683 – 688.