Direct Evidence of Spin Cylcoid in Strained Nanoscale Bismuth Ferrite Thin Film

J.Bertinshwa^{1,2}, R.Maran³, S.J. Callori^{1,2}, <u>V. Ramesh³</u>, J. Cheung³, S.A. Danilkin², W.T. Lee², S. Hu³, J. Seidel³, N. Valanoor³ and C. Ulrich^{1,2} * ¹School of Physics, The University of New South Wales, Sydney, New South Wales 2052, Australia ²The Bragg Institute, Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2234, Australia ³School of Materials Science and Engineering The University of New South Wales, Sydney, New South Wales 2052, Australia *Clemens Ulrich: c.ulrich@unsw.edu.au

Magnonic devices in micro- and nanostructured ferromagnetic materials have recently attracted tremendous attention[1]. To realize magnonic devices, a strong long-range spin cycloid with well-known direction is desired, since it is a prerequisite for the magnetoelectric coupling[1]. Bismuth Ferrite (BFO) is one of the most studied multiferroic material as it possesses superior ferroelectric properties and a cycloidal magnetic order in the bulk, and thus shows potential for magnonic applications[2]. However its applicability as a magnonic material, particularly in thin film form has been stymied as the stabilization of a large-scale uniform spin cycloid in nanoscale (100 nm) thin BiFeO₃ films has been challenging[3]. This presentation demonstrates the existence of cycloidal spin order in 100 nm BiFeO₃ thin films through the careful choice of crystallographic orientation, and control of the electrostatic and strain boundary conditions. Neutron diffraction, in conjunction with X-ray diffraction, reveals an incommensurate spin cycloid length and Néel temperature remain equivalent to bulk at room temperature. It appears in published form in ref[4]. The research was supported by ARC Discovery Project and John Stocker Graduate Fellowship program.

- [1] S.O. Demokritov and A.N. Slavin, *Magnonics: From fundamentals to applications* vol. 125: Springer Science & Business Media, 2012.
- [2] G. Catalan and J.F. Scott, "Physics and applications of bismuth ferrite," *Advanced Materials*, vol. 21, pp. 2463-2485, 2009.
- [3] I.W. Ratcliff, Z. Yamani, V. Anbusathaiah, T. Gao, P. Kienzle, H. Cao, *et al.*, "Electric-field-controlled antiferromagnetic domains in epitaxial BiFeO 3 thin films probed by neutron diffraction," *Physical Review B*, vol. 87, p. 140405, 2013.
- [4] J. Bertinshaw, R. Maran, S.J. Callori, V. Ramesh, J. Cheung, S.A. Danilkin, *et al.*, "Direct evidence for the spin cycloid in strained nanoscale bismuth ferrite thin films," *Nature Communications*, vol. 7, 2016.