[001]_c Textured Ternary Ceramics with Enhanced Piezoelectric Properties by Templated Grain Growth

Beecher Watson¹*, Yunfei Chang¹, Libby Kupp¹, Jie Wu¹, Mark A. Fanton², Richard J. Meyer Jr.², and Gary L. Messing¹ ¹Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802 ²Applied Research Laboratory, The Pennsylvania State University, University Park, PA 16802 *Beecher Watson: bhwatson14@gmail.com

The ternary $Pb(In_{1/2}Nb_{1/2})O_3$ - $Pb(Mg_{1/3}Nb_{2/3})O_3$ - $PbTiO_3$ (PIN-PMN-PT) relaxor ferroelectric system has recently attracted considerable attention because of its broader temperature usage range, higher coercive field and comparable piezoelectric properties to binary PMN-PT. In this work, highly $[001]_c$ textured PIN-PMN-PT ceramics with and without Mn-doping were fabricated by templated grain growth with $PbTiO_3$ -based platelets. The effects of texture engineering and Mn-doping on both dielectric/piezoelectric/ferroelectric properties and the corresponding domain structures of the ternary ceramics were investigated. The highly textured PIN-PMN-PT ceramics without Mn-doping exhibit ~200% improvement in the piezoelectric response as compared to the randomly oriented ceramics. Mn-doping induces "hard" characteristics and enhances the mechanical quality factor of the textured ceramics. These textured ceramics are very promising for high performance electromechanical applications.