Non-resonant Magnetoelectric Energy Harvester

P. Finkel ^{*1}, M. Staruch¹. ¹Materials Science and Technology Division, U.S. Naval Research Laboratory 4555 Overlook Ave. SW, Washington, DC 20375 R. Perez-Moyet² Ahmed Amin² ²Sensor and Sonar Department, Naval Undersea Warfare Center, 1176 Howell St, Newport, RI 02841 *Corresponding Author: peter.finkel@nrl.navy.mil

Recent advances in phase transition transduction enabled the design of a non-resonant broadband mechanical energy harvester that is capable of delivering energy density per cycle $\sim 10^3$ larger than the resonant cantilever piezoelectric type. The basic idea here is to mechanically bias the crystal to a state just below the ferroelectric rhombohedral F_R -ferroelectric orthorhombic F_O phase boundary in a domain engineered [011] oriented and poled, relaxor-ferroelectric single crystal. Therefore, small variation in an input parameter, e.g., electrical, mechanical, or thermal will generate a large output due to the significant polarization change associated with the transition. We extended this idea to design a non-resonant, magnetoelectric composite harvester comprised of a highly magntostrictive $Fe_{81}Ga_{19}$ (Galfenol) alloy and lead indium niobate–lead magnesium niobate–lead titanate (PIN-PMN-PT) domain engineered relaxor ferroelectric single crystal. We demonstrated high energy conversion by triggering the F_R - F_O transition in the single crystal by a small time varying magnetic field in a broad frequency range that is important for multimodal energy harvesting devices [1].

This work was funded by the Office of Naval Research (ONR). Reference: 1.P. Finkel et al *Actuators*, **5** [1] 2. (2015)