Pyroelectric Energy Conversion Cycles Tailored for Antiferroelectrics

B.M. Hanrahan^{1*}, Y. Espinal^{1,2}, C. J. Neville¹, and A. N. Smith³ ¹U.S. Army Research Laboratory 2800 Powder Mill Rd., Adelphi, MD 20783 ²Institute of Materials Science, University of Connecticut 97 North Eagleville Road, Storrs, CT 06269-3136 ³U.S. Naval Academy 121 Blake Rd, Annapolis, MD 21402 *Brendan.M.Hanrahan.civ@mail.mil

Pyroelectric energy conversion research is accelerating towards realizing efficient, practical systems, which can be credited to two major innovations: electric field and temperature-driven thermodynamic cycles ¹, and thin-film active materials able to withstand high electric fields ². Antiferroelectrics have been recognized for their potential for energy conversion ³, but there has not been a thermodynamic cycle analysis that takes advantage of the unique features of antiferroelectric polarization-temperature relationships. Specifically, the polarization at low electric fields increases as temperature increases, creating a region of inverse intrinsic pyroelectricity. This region is highlighted in figure 1. We have developed a two-part conversion cycle (figure 2) that takes advantage of this unique region while increasing energy density by over 17% for a given temperature range and enables cascaded heat transfer system designs. As materials with exotic polarizations are realized⁴, it will be important to re-examine their energy conversion cycles for specific property relationships.

Figure 1. Isothermal hysteresis loops from 300-540K for a 500 nm ($Pb_{0.995}La_{0.05}$) $Zr(_{0.95})Ti(_{0.05})O_3$ thin film with Pt bottom and IrO₂ top electrodes.

Figure 2. Energy conversion cycles between AFE and PE phases. Cycle 1 consists of heating at a low field while polarizing, charging, iso-polarization cooling, and discharging. Heat is transferred to cycle 2, which is an Olsen cycle [1].

1. R. B. Olsen, D. A. Bruno and J. M. Briscoe,

Journal of Applied Physics 58 (12), 4709-4716 (1985).

2. A. S. Mischenko, Q. Zhang, J. F. Scott, R. W. Whatmore and N. D. Mathur, Science **311** (5765), 1270-1271 (2006).

3. X. Hao, Y. Zhao and Q. Zhang, The Journal of Physical Chemistry C **119** (33), 18877-18885 (2015).

4. J. Mangeri, K. C. Pitike, S. P. Alpay and S. Nakhmanson, Npj Computational Materials **2**, 16020 (2016).