Magnetodielectric Properties of CuO and MnO₂ Modified BiFeO₃-BaTiO₃ Solid Solution

Amit Kumar^{1,*}, Narayan Bastola¹ and Rajeev Ranjan¹

¹Department of Materials Engineering, Indian Institute of Science, Bangalore (India) -560012,

*Amit Kumar: amitk.master@gmail.com

We have carried out a systematic study of the structural, magnetodielectric and ferroelectric properties of 0.675BiFeO₃-0.325BaTiO₃. 0.675BiFeO₃-0.325BaTiO₃ + x wt % CuO + y wt % MnO₂, (where x=0, y=0; x=0.15, y=0.1; x=0.3, y=0.2; and x=0.6, y=0.4) multiferroic ceramics, prepared by a conventional ceramic fabrication technique. We have found that the remanent polarization (*Pr*) increased from 26.57 μ C/cm² to 30.06 μ C/cm² after magnetic poling at a field of 20 kOe. The values of piezoelectric coefficient (*d*₃₃) and magnetocapacitance (MC) were found to be increased with increasing the content of CuO and MnO₂. The 0.6 wt % CuO + 0.4 wt % MnO₂ modified system shows a very interesting direct magnetoelectric coupling (α ~10⁻⁸ s/m) and magnetocapacitance (2.5 %).