
Investigation of Morphotropic Phase Boundaries in the PIN-PSN-PT Ferroelectric Systems with High $T_{\rm rt}$ and $T_{\rm c}$ Phase Transition Temperatures

Dabin Lin^{1,2,*}, Fei Li^{2,*}, Shujun Zhang³, Edward Gorzkowski⁴, and Thomas R. Shrout² ¹Laboratory of Thin Film Techniques and Optical Test, Xi'an Technological University, Xi'an 710032, China ²Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, USA ³Institute for Superconducting and Electronic Materials, Australia Institute of Innovative Materials, University of Wollongong, NSW 2500, Australia ⁴Materials Science & Component Technology Directorate, Naval Research Laboratory,

Washington, D.C. 20375, USA

*Dabin Lin: dabinlin@xatu.edu.cn, Fei Li: ful124@psu.edu

New morphotropic phase boundary (MPB) compositions with relatively high T_c s were projected in the Pb(In_{1/2}Nb_{1/2})O₃-Pb(Sc_{1/2}Nb_{1/2})O₃-PbTiO₃ (PIN-PSN-PT) solid solution based on the perovskite tolerance factor relationships, and were experimentally confirmed. The phase, dielectric, piezoelectric and ferroelectric properties of PIN-PSN-PT ceramics were investigated. According to the results of dielectric and pyroelectric measurements, high rhombohedral-tetragonal phase transition temperatures, $T_{\rm rt}$ s on order of 189~210 °C, Curie temperatures $T_{\rm c}$ on the order of 274~285 °C and piezoelectric coefficients d₃₃ in the range of 310~360 pC/N, were achieved in xPIN-(1x)PSN-0.37PT (x=0.15~0.23) ceramics, indicating promising relaxor-PbTiO₃ systems with high phase transition temperatures. The maps of T_c , T_{rt} , d_{33} and ε_r in the PIN-PSN-PT system were established, providing a clear direction for composition screening for future crystal growth.

New high-temperature relaxor-PbTiO₃ system