Strain and Magnetic Field Induced Spin-Structure Transitions in Multiferroic BiFeO₃ A. Agbelele¹, <u>D. Sando^{2,3}</u>, * C. Toulouse⁴, C. Paillard⁵, R.D. Johnson⁶, R. Rüffer⁷, A.F. Popkov⁸, C. Carrétéro², P. Rovillain⁴, J.-M. Le Breton¹, B. Dkhil⁵, M. Cazayous⁴, Y. Gallais⁴, M.-A. Méasson⁴, A. Sacuto⁴, A.K. Zvezdin⁸, A. Barthélémy², J. Juraszek¹, and M. Bibes² ¹Normandie Univ, UNIROUEN, INSA Rouen, CNRS, GPM, 76800 Rouen, France ²Unité Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, 91767 Palaiseau, France ³Department of Materials Science and Engineering, UNSW Sydney, 2052 Australia ⁴Laboratoire MPQ (UMR 7162 CNRS), Université Paris Diderot-Paris 7, 75205 Paris Cedex 13, France ⁵Laboratoire SPMS, CentraleSupelec, CNRS-UMR8580, 92290 Châtenay-Malabry, France ⁶Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK ⁷European Synchrotron Radiation Facility, CS 40220, F-38043 Grenoble Cedex 9, France ⁸Moscow Institute of Physics and Technology (State University), 141700 Dolgoprudny, Russia *Daniel Sando: daniel.sando@unsw.edu.au In multiferroic materials [1], the coexistence of several exchange interactions often results in competition between non-collinear spin orders which are sensitive to temperature, hydrostatic pressure, or magnetic field. In bismuth ferrite (BiFeO₃), a room-temperature multiferroic [2], the intricacy of the magnetic phase diagram is only fully revealed in thin films [3]: epitaxial strain suppresses the cycloidal spin order present in the bulk [4], transforming it into various antiferromagnetic states, modifying the spin direction and ordering patterns [5]. Here, we explore the combined effect of strain and magnetic field on the spin order in BiFeO₃. Through nuclear resonant scattering [6] and Raman spectroscopy, we show that both strain and magnetic field destabilize the cycloid, resulting in a critical field sharply reduced from the bulk value [7]. Neutron diffraction data support this hypothesis, with a cycloid period larger than the bulk value and increasing with strain and/or magnetic field. Analysis of the data in light of Landau-Lifshitz calculations [8] indicates that very small strains are sufficient to induce large modifications in magnetoelastic coupling [9], suggesting interesting opportunities for strain- and/or field-mediated devices which take advantage of finite-size effects in multiferroic films. Our results have important implications for magnonic devices using multiferroic films. ## References - [1] W. Eerenstein, N. D. Mathur, J. F. Scott, Nature 2006, 442, 759. - [2] G. Catalan, J. F. Scott, Adv. Mater. 2009, 21, 2463. - [3] D. Sando, A. Barthélémy, M. Bibes, J. Phys. Condens. Matter 2014, 26, 473201. - [4] I. Sosnowska, T. Peterlin-Neumaier, E. Steichele, J. Phys. C Solid State Phys. 1982, 15, 4835. - [5] D. Sando *et al.*, Nat. Mater. **2013**, 12, 641. - [6] R. Röhlsberger *et al.*, Phys. Rev. B **2003**, 67, 245412. - [7] A. Agbelele *et al.*, Adv. Mater. **2017**, 1602327. - [8] Z. V. Gareeva, A. F. Popkov, S. V. Soloviov, A. K. Zvezdin, Phys. Rev. B 2013, 87, 214413. - [9] D. Sander, Reports Prog. Phys. **1999**, 62, 809.