Ferroelectric Film Dynamics Simulated by a Second-order Time-dependent Landau Model

Michael S. Richman^{1*}, Paul Rulis¹, and Anthony N. Caruso¹

¹Department of Physics and Astronomy, University of Missouri-Kansas City

5110 Rockhill Road, Kansas City, Missouri, 64110

*Michael S. Richman: msrxt4@mail.umkc.edu

Based on the work of B. Wang et al. [J. Appl. Phys., 94, 3384 (2003)] that established a second-order timedependent Ginzburg-Landau equation and a model for domain switching in ferroelectric films that employs this equation, we simulate the reaction of a ferroelectric film system's polarization \tilde{P} to an applied electric field $\tilde{E} = \tilde{E}_0 \sin(\tilde{\omega}\tilde{t})$ where \tilde{E}_0 , $\tilde{\omega}$, and \tilde{t} represent field amplitude, field frequency, and time, respectively. Polarization hysteresis loop structure as a function of \tilde{E}_0 and $\tilde{\omega}$ are examined. The relationship between hysteresis loop area $\langle \tilde{A} \rangle$ and $\tilde{\omega}$, i.e., hysteresis dispersion, is calculated. $\langle \tilde{A} \rangle$ represents the energy dissipated during one cycle of the applied field. Departing from the work of Y.-L. Wang et al. [J. Mater. Sci., 46, 2695 (2011)] that established the considered model produces experimentally expected hysteresis dispersion in the low- $\tilde{\omega}$ regime, we demonstrate that this model also produces experimentally expected hysteresis dispersion in the high- $\tilde{\omega}$ regime. Furthermore, we determine that this dispersion implies, in agreement with empirical observations, that a characteristic time τ_1 exists for system relaxation and that this time is inversely proportional to \tilde{E}_0 when the latter is sufficiently high. It is the value of τ_1 relative to $\tilde{\omega}^{-1}$ that determines whether or not complete domain reversal occurs. We also determine the dependence between field parameters and whether \tilde{P} exhibits a symmetry-restoring oscillation (SRO) or a symmetry-breaking oscillation (SBO). Only SROs exhibit a symmetry identical to that of the applied field, i.e., $X(\tilde{t}) = -X(\tilde{t} + t)$ T/2) where T represents the period of the applied field and X represents \tilde{E} or \tilde{P} .

FIG. 1. Steady-state hysteresis loops for $\tilde{E}_0 = 100$ and the field frequencies indicated. The area $\langle \tilde{A} \rangle$ of each loop is displayed.

FIG. 3. Bifurcation curve indicating whether a SRO or a SBO exists for the parameters indicated.

This work was supported by the Office of Naval Research under award N00014-16-1-2067.