Enhanced Dielectric and Piezoelectric Properties of the $\mathrm{BiFeO}_{3}-\mathrm{PbTiO}_{3}-\mathrm{BaZrO}_{3}$ Ternary High Curie Temperature Ceramics

Jie Jian, Jianguo Chen and Jinrong Cheng*
School of Materials Science and Engineering
No. 99 Shangda Road, Shanghai University, China, 200444
*Jinrong Cheng: jrcheng@staff.shu.edu.cn

$\mathrm{BiFeO}_{3}-\mathrm{PbTiO}_{3}$-based solid solutions have been investigated for the development of piezoelectric ceramics with high Curie temperatures. It is observed that with the mix of the third component BaZrO_{3}, the dielectric loss is decreased and piezoelectric property is highly improved compare with the $\mathrm{BiFeO}_{3}-\mathrm{PbTiO}_{3}$ (BF-PT) binary system. In this paper, $\mathrm{BiFeO}_{3}-\mathrm{PbTiO}_{3}-\mathrm{BaZrO}_{3}$ (BF-PT-BZ) solid solutions with composition of $x B F-(0.95-x)$ PT- $0.05 \mathrm{BZ}(\mathrm{x}=0.60,0.62,0.63,0.64,0.66)$ were synthesized via solid-state reaction method. Samples calcined at $1020^{\circ} \mathrm{C}$ exhibit high density and pure phase. The grain size of xBF-($0.95-\mathrm{x})$ PT- 0.05 BZ is in the range from $10-22 \mu \mathrm{~m}$. Values of dielectric constant ε_{r} of xBF-($0.95-\mathrm{x})$ PT- 0.05 BZ increased to 265 and then decreased while the loss $\tan \delta$ is on the contrary when the $\mathrm{BiFeO}_{3}(\mathrm{BF})$ content varies from 0.60 to 0.66 at low frequency. The T_{c} is from $550^{\circ} \mathrm{C}$ to $560^{\circ} \mathrm{C}$ with the increasing content of BF. xBF-($0.95-\mathrm{x})$ PT- 0.05 BZ ceramics for $\mathrm{x}=0.63$ is around the morphotropic phase boundary (MPB), exhibiting most saturated polarization, with remnant polarization P_{r} of $43.2 \mu \mathrm{C} / \mathrm{cm}^{2}$ and coercive field E_{c} of $61.6 \mathrm{kV} / \mathrm{cm}$. The values of d_{33}, k_{p} and Q_{m} of $0.63 \mathrm{BF}-0.32 \mathrm{PT}-0.05 \mathrm{BZ}$ are $118 \mathrm{pC} / \mathrm{N}, 0.322$ and 501 respectively, showing tremendous potential for high Curie temperature piezoelectric applications.

References

[1] Wei Hu, Xiaoli Tan, Krishna Rajan, $\mathrm{BiFeO}_{3}-\mathrm{PbZrO}_{3}-\mathrm{PbTiO}_{3}$ ternary system for high Curie temperature piezoceramics, Journal of the European Ceramic Society, 801-807,2011.
[2] Ashoka Siddaramanna, V Kothai, ChandanSrivastava and Rajeev Ranjan, Stabilization of metastable tetragonal phase in a rhombohedral magnetoelectric multiferroic $\mathrm{BiFeO}_{3}-\mathrm{PbTiO}_{3}$, Journal of Physics: Applied Physics, 2014.

