Ferroelectric Properties of an Innovative FeFET with 3.3V Writing, 10⁹ Endurance, and Long Retention

M. Takahashi^{1*}, W. Zhang^{1,2}, and S. Sakai¹

¹National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan ²WACOM R&D Corporation, Fukaya, Saitama 369-1108, Japan

*Mitsue Takahaski: mitsue-takahashi@aist.go.jp

Recently we reported 3.3 V write-voltage ferroelectric-gate field-effect transistors (FeFETs) with 10⁹ endurances and stable retentions measured for 10⁵ s.¹⁾ The FeFETs had an Ir/Ca_{0.2}Sr_{0.8}Bi₂Ta₂O₉ (CSBT)/HfO₂/Si metal/ferroelectric/insulator/Si (M/F/I/S) gate stack. For developing the FeFETs, a novel polycrystallization-annealing process in N₂ dominant ambient was introduced, whereas a conventional ambient was pure O₂. The optimum ambient at 780 °C was 1000-sccm-N₂ mixed with 0.5-sccm O₂. The FeFET showed a 0.59 V memory window (V_w) in the drain-current vs. gate-voltage (I_d-V_g) hysteresis curve scanned by V_g = ±3.3 V. The M/F/I thicknesses of the Ir, CSBT, and HfO₂ layers were 75, 135, and 5 nm, respectively. A conventional O₂-annealed Pt/CSBT/(HfO₂)_{0.75} (Al₂O₃)_{0.25}/Si FeFET with a 160 nm-thick CSBT showed only V_w = 0.31 V at V_g = ±3.3 V despite the thicker CSBT than that of the novel FeFET.

In comparison with the conventional O2 annealing process, the novel N2-dominant annealing effectively enlarged ferroelectric $V_{\rm w}$ by two factors.³⁾ One was a suppressed interfacial-layer (IL) growth. The IL was SiO_2 inevitably grown between the HfO₂ layer and the Si substrate during the annealing at about 800 °C. The optimum N₂-dominant annealing resulted in a 2.6 nm-thick IL which was 0.8 nm thinner than the conventional by an O₂ annealing.²⁾ The other factor for the enlarged V_w was an improved CSBT ferroelectricity in the FeFETs. It was revealed using our new analysis method of FeFETs.³⁾ In the method, a relationship of $V_w vs.$ maximum $P(P_{max})$ was derived from two experimental relations of $P-V_g$ (Fig. 1(a)) and $V_{\rm w}$ vs. $V_{\rm g,max}$. The P is the ferroelectric polarization which is equivalent to a surface-charge density common to the F/I/S. The $V_{g,max}$ is the scanned V_g amplitude. $P-V_g$ was measured using Radiant RT6000S. $V_w-V_{g,max}$ is extracted not only from I_d-V_g measured using Agilent 4156C but also from the $P-V_g$ (Fig. 1(a)). In the all the measurements, applicable V_g was restricted to satisfy the condition of $P_{\text{max}} < 2.5$ μ C/cm². The $P_{\text{max}} < 2.5 \ \mu$ C/cm² is our rule in operating Si-based FeFETs. Otherwise, charge injection into the IL starts, which may degrade the endurance and retention of the FeFETs. Coercive field $E_{\rm c}$ of the CSBT was evaluated as $2E_c = V_w/d_{CSBT}$, where d_{CSBT} was the CSBT thickness. We successfully extracted an important ferroelectric property $2E_c-P_{max}$ (Fig. 1(b)) from the FeFET which is not directly measurable in the M/F/I/S. As shown in Fig. 1(b), we found that the CSBT had $2E_c = 68.3$ kV/cm at $P_{\text{max}} = 2.36$ μ C/cm² in the FeFET annealed in the optimum N₂-dominant gas. On the other hand, in a conventional FeFET annealed in pure O₂, the CSBT had only $2E_c = 33.9 \text{ kV/cm}$ at the $P_{\text{max}} = 2.36 \mu\text{C/cm}^2$.

In conclusion, 3.3 V write-voltage high-quality FeFETs were achieved by the optimum N₂-dominant gas annealing process. The novel process had two effects on enlarging the $V_{\rm w}$: the IL thickness reduction and the ferroelectricity improvement of the CSBT in the FeFETs.

This work was partially supported by WACOM R&D Corporation.

1) W. Zhang *et al.*, Ext. Abstr. Int. Conf. Solid State Devices and Materials, 2016, p. 97. 2) W. Zhang *et al.*, Semicond. Sci. Technol. **28**, 085003, (2013).

3) W.Zhang et al., accepted for Jpn. J. Appl. Phys.

Fig. 1 (a) Measured $P-V_g$ at various $V_{g,max}$. (b) Analyzed $2E_c-P_{max}$ of this work (\circ) and the conventional (\triangle).