A Proposal of New Buffer Layer for Depositing (110)-oriented Perovskite Thin Films on (111)Pt/SiO₂/Si Substrates

 <u>K. Uchiyama</u>^{1,*}, T. Sato², A. Akama³, T. Kiguchi³, T.J. Konno³, N. Oshima⁴, D. Ichinose², and H. Funakubo²
¹Department of Creative Engineering, National Institute of Technology, Tsuruoka College 104 Sawada Inooka, Tsuruoka, Yamagata, 997-8511, Japan
² School of Materials and Chemical Technology, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
³ Institute for Materials Research, Tohoku University 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
⁴Departient of Innovative and Engineering Materials, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan

Y doped BaCeO₃ (BCYO) and Y doped SrZrO₃ (SZYO) thin films of perovskite oxides were deposited on $(111)Pt/SiO_2/(100)Si$ [abbreviated as (111)Pt/Si] substrates by the RF-magnetron sputtering method. X-ray diffraction appeared that the BCYO and SZYO thin films were highly (110)-oriented in the normal direction of the substrates but randomly oriented in plane.

To investigate more precise crystallographic relationship between (110)SZYO and (111)Pt, SZYO thin film of perovskite-type oxides with (110) orientation was deposited on (111)Pt//(111)SrTiO₃ (STO) single crystal substrates. X-ray diffraction patterns and transmission electron microscopy analysis showed that the SZYO thin film was epitaxially grown and composed of columnar grains with 10–20 nm-in width and rotated about 10° in-plane. The pole figure scan showed (110)-diffraction peaks with six-fold symmetry at azimuth angle, i.e. psi angle, of 60° together with the center one. These results indicate that the film is epitaxially grown with three domains.

Finally, we deposited $SrRuO_3$ (SRO) thin films, a typical conductive perovskite-type oxide, on the polycrystalline (110)BCYO and (110)SZYO fabricated on (111)Pt/Si and found the deposited SRO thin film was highly (110)-oriented. We believe these BCYO and SZYO films can be used for depositing (110)-oriented functional perovskites, e.g. (Ba,Sr)TiO₃ and Pb(Zr,Ti)O₃, on (111)Pt/Si substrates.

Acknowledgements: We would like to thank to JSPS KAKENHI grant Number 26420284 & 15H04121, the Iron and Steel Institution of Japan, and RIEC, Tohoku University for their financial support. A part of this study was also supported by the Tohoku University microstructural characterization platform as a program of the 'Nanotechnology Platform' of the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. This work was performed under the Inter-University Cooperative Research Program of the Institute for Materials Research, Tohoku University (Proposal No. A-16-TU-0009).