Temperature Dependence of Field-responsive Mechanisms in Lead Zirconate Titanate Investigated Using Laboratory X-ray Diffraction

¹<u>C.C. Chung</u>¹*, C.M. Fancher¹, R. Chen², C. Isaac², A. Kynast³, J. Nikkel¹, E. Hennig³, and J. L. Jones¹, ¹Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, 27695

² Department of Materials Science and Engineering, University of New South Wales,

Sydney, NSW 2052, Australia

³ PI Ceramic GmbH, Lindenstraße, 07589 Lederhose, Germany

*Ching-Chang Chung: cchung4@ncsu.edu

A custom laboratory diffractometer stage capable of simultaneous temperature and electric field measurements was fabricated and validated for studying the field responsive mechanisms of ferroelectric materials (i.e. ferroelectric/ferroelastic domain wall motion, piezoelectric lattice strain, and polymorphic phase transitions). The stage was demonstrated by measuring PbZr_{1-x}Ti_xO₃ (PZT) based materials, a commercially available PZT and 1% Nb-doped $PbZr_{1,x}Ti_xO_3$ (0.44 $\leq x \leq 0.50$) ceramics, over a temperature range of 25°C to 250°C. The degree of non-180 domain alignment (η_{002}) of PZT as a function of temperature and composition was quantified. η_{002} of the commercially available PZT ceramic was found to increase exponentially with temperature. The increase in degree of domain alignment, $\Delta \eta_{002}$, with temperature can be expressed well by the Arrhenius relationship. The activation energy for thermally activated domain wall depinning process in PZT was found to be 0.47 eV. Additionally, a field-induced-phase transition in 1% Nbdoped PbZr_{0.56}Ti_{0.44}O₃ (PZT56/44) was observed at 250°C. Substantial change in the ratio of rhombohedraltetragonal phase fractions was observed in the PZT 56/44 after the electrical cycling. The tetragonal phase fraction was increased from 23.5% to 65.3% after electrical cycling. The induced tetragonal phase, at 250°C of PZT 56/44, underwent a large amount of domain switching ($\eta_{002} = 0.45$ at 1.75kV/mm). These *in situ* structural details as a function of electric field, and over a wide temperature range, can provide the fundamental information necessary to understand these materials in their technological application.